您的当前位置:主页 > 新闻中心 > 行业新闻 > 高效简易高精度磨削细长轴的新工艺(2)

高效简易高精度磨削细长轴的新工艺(2)

发布时间:2006-09-27 00:00:00

在普通外圆磨床上超精磨削细长轴一直是老大难问题,特别是,当工件的长径比超过30(L/D>30)时,尤为困难。美国中小型机械修造公司(厂)的长期实践表明,只要检修、调整好普通外圆磨床,合理地选择砂轮、磨削用量和工艺过程,就能满足细长轴的技术要求。

a.修整砂轮的走刀量S、切深t均比一般磨削大,可使砂轮的表面比较粗糙,以增强切削性能;

b。磨削时工件的转速较低,精磨时更低,这是为了减少细长轴因旋转而产生的振荡,而走刀量较大,以便将一部分切向力转化为轴向力,减少径向力Py;

c.磨削时切深t用双行程来达到。因工件转速低,工件表面与砂轮表面在单位时间内和单位面积上的接触就相应地减少,可用往复一次或数次来弥补。

磨削对象 磨削用量名称 粗 磨 精 磨
修整砂轮
工作台纵向速度S/(m/min)
1~1.5
0.3~0.8
磨削工件
工件线速度v/(m/min)
2.5~8
2~5

切削用量的合理选择

除了合理地选择中心架的数量之外,主要是在磨削过程中合理地调整中心架的两个支片:用涂色法来观察支片前端与工件表面接触与否;用手摸支片前端与工件表面是否接触;看火花,当工件、砂轮、支片三者位置一致时,用手调整支片,并观察火花是否增大。对于高精度、低粗糙度的细长轴磨削,应分粗、精磨。在精磨前应再进行一次砂轮修整,目的是要磨出大量的等高微刃(图2),先是用锋利的金刚石笔(图3),以很小而均匀的进给量精密地修整砂轮,然后用油石(用平面磨床磨平)或精车后的砂轮以很小而均匀的进给量进行细密地修整砂轮而获得。同时将工件放松,在两中心孔内放黄油,并放松中心架,使两支片不接触工件。然后再重新调整中心架的两个支片,方法如图4所示。百分表沿直径方向顶住工件,调整支片,当工件与支片接触,百分表立即有反应,这样我们就可控制支片的前后位置。

细长轴的精度主要是由弯曲度、圆度、粗糙度等决定,而弯曲度和粗糙度是一个矛盾体:粗糙度在Ra0。2以上,砂轮的挤压力大,Py力也大,使工件产生弯曲,而细长轴磨削中的中心架调整又往往难以控制。因此,对于磨削高精度、低粗糙度的细长轴来说,的确是一个老大难问题。为此,可以应用表中的μA电流通与不通的测量原理,来测量工件与支片接触情况。先将中心支架的两支片做些改进(见图5),在支片前端分别装上导电的铜块,再用电线 与表一端接(+)极,另一端接(-)极,(+)极与中心架相连,(-)极与尾架相通,当工件与支片相接时,表的旋转开关拨至100kΩ时,指针立即转动,表明整个电路相通了,其灵敏度很高,指针从0读数值之间的摆动值为中心架支片上的移动量4μm,当表调整到10kΩ时,指针的摆动值为0。001mm。用这种控制方法来控制中心架支片与工件的接触,再加上“差动微调结构”来磨削高精度、低粗糙度值的细长轴,是一种比较理想的方法。这种方法就象超精磨床上的磨削指示仪那样,随时知道切削力、挤压力的大小。对于提高磨削精度,降低粗糙度值都较为有利。

在普通外圆磨床上超精磨削细长轴一直是老大难问题,特别是,当工件的长径比超过30(L/D>30)时,尤为困难。美国中小型机械修造公司(厂)的长期实践表明,只要检修、调整好普通外圆磨床,合理地选择砂轮、磨削用量和工艺过程,就能满足细长轴的技术要求。

a。修整砂轮的走刀量S、切深t均比一般磨削大,可使砂轮的表面比较粗糙,以增强切削性能;

b。磨削时工件的转速较低,精磨时更低,这是为了减少细长轴因旋转而产生的振荡,而走刀量较大,以便将一部分切向力转化为轴向力,减少径向力Py;

c.磨削时切深t用双行程来达到。因工件转速低,工件表面与砂轮表面在单位时间内和单位面积上的接触就相应地减少,可用往复一次或数次来弥补。

磨削对象 磨削用量名称 粗 磨 精 磨
修整砂轮
工作台纵向速度S/(m/min)
1~1.5
0.3~0.8
磨削工件
工件线速度v/(m/min)
2.5~8
2~5

切削用量的合理选择

除了合理地选择中心架的数量之外,主要是在磨削过程中合理地调整中心架的两个支片:用涂色法来观察支片前端与工件表面接触与否;用手摸支片前端与工件表面是否接触;看火花,当工件、砂轮、支片三者位置一致时,用手调整支片,并观察火花是否增大。对于高精度、低粗糙度的细长轴磨削,应分粗、精磨。在精磨前应再进行一次砂轮修整,目的是要磨出大量的等高微刃(图2),先是用锋利的金刚石笔(图3),以很小而均匀的进给量精密地修整砂轮,然后用油石(用平面磨床磨平)或精车后的砂轮以很小而均匀的进给量进行细密地修整砂轮而获得。同时将工件放松,在两中心孔内放黄油,并放松中心架,使两支片不接触工件。然后再重新调整中心架的两个支片,方法如图4所示。百分表沿直径方向顶住工件,调整支片,当工件与支片接触,百分表立即有反应,这样我们就可控制支片的前后位置。

细长轴的精度主要是由弯曲度、圆度、粗糙度等决定,而弯曲度和粗糙度是一个矛盾体:粗糙度在Ra0.2以上,砂轮的挤压力大,Py力也大,使工件产生弯曲,而细长轴磨削中的中心架调整又往往难以控制。因此,对于磨削高精度、低粗糙度的细长轴来说,的确是一个老大难问题。为此,可以应用表中的μA电流通与不通的测量原理,来测量工件与支片接触情况。先将中心支架的两支片做些改进(见图5),在支片前端分别装上导电的铜块,再用电线 与表一端接(+)极,另一端接(-)极,(+)极与中心架相连,(-)极与尾架相通,当工件与支片相接时,表的旋转开关拨至100kΩ时,指针立即转动,表明整个电路相通了,其灵敏度很高,指针从0读数值之间的摆动值为中心架支片上的移动量4μm,当表调整到10kΩ时,指针的摆动值为0.001mm。用这种控制方法来控制中心架支片与工件的接触,再加上“差动微调结构”来磨削高精度、低粗糙度值的细长轴,是一种比较理想的方法。这种方法就象超精磨床上的磨削指示仪那样,随时知道切削力、挤压力的大小。对于提高磨削精度,降低粗糙度值都较为有利。

快乐飞艇官网 快乐飞艇是合法的吗 必发彩票开户 快乐赛车软件 快乐赛车什么方法稳 秒速快3 河北快3 快乐赛车5码计划 玩快乐飞艇犯法吗 快乐飞艇怎么看走势